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The origins of the coupled cluster method are described. Special attention is paid to
the arguments put forward for the exponential structure of the wave functions. Various
approximation schemes invented during the last 40 years are presented. The problems
arising from these approximations necessarily truncating or destroying the exponential
form are discussed and ways to deal with them are described.

I am pleased to welcome my old friend Fritz Coester at this session. As you probably

know he did play a seminal role in the invention of the Coupled cluster method

(CCM). Besides, Fritz always was a benevolent observer and critic of the later

developments of the method. I remember several discussions with him, where he

quite often was quite critical about some aspects of the CCM,thereby helping me

understand better my own work. I want to thank him for this — and for the many

other occasions where he has helped me in various ways.

Having paid my respect to Fritz Coester let me now turn to the CCM. A bio-

graphy not only describes the history of the person in question, it also is supposed

to say something about its character. This can only mean that I have also to say

something about the general features of the CCM and the ideas which lead to it.

However, I shall say almost nothing about applications. I merely shall attempt to

list the people who started applications in each of the many subfields of physics

and chemistry.

1. Why the Exponential Form?

To understand the environment which led to the CCM I recall that in the mid fifties

of the last century the many-body systems became the object of a lot of research

papers. I remember a joke well known in the physics community before that time: in

physics there are either zero, one, two or (possibly) infinitely many particles. This

was because that was all one could do without computers or the kind of computers

then available. This joke was not quite to the point since some Hartree–Fock (HF)

variational computations had been done already, but by the quantum chemists (not
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by the physicists). It was perturbation theory in the Bethe–Goldstone or Green’s

function forms at which people jumped with great optimism at that time. Especially

nuclear physics required a great amount of this optimism for two reasons: one had

to find first some two-body nucleon-nucleon (NN) potential, either using fits from

scattering experiments or deriving them from meson exchanges or a mixture of

both, a somewhat dubious approach. Secondly, these potentials did necessarily have

a hard or a strong repulsive core plus a somewhat long ranged attractive tail, and

this fact somehow damped the hopes that perturbation theory could work. Due to

Bethe1 and Brueckner2 in 1956 a way was found how to get around this problem

by summing an infinite subset of perturbation diagrams describing the scattering

of particle pairs in the nuclear medium. This was achieved by introducing a special

two particle sub-wave function generated from such diagrams. There were doubts

whether one could ignore the presence of other particles due to the rather long range

of the attractive part of the NN interaction. This question was answered already in

1950 by Weisskopf.3 He made the observation that the Pauli principle does not allow

scattering into occupied levels of the Fermi sea and that this in coordinate space

means the existence of the famous “healing distance” leading to rather short ranged

effective potentials. This certainly was more or less only a plausibility argument to

justify the special selection of perturbation diagrams. It finally lead to a systematic

search for two-, three-, . . . body sub-wave functions. In this search the need for

dealing with hard core interactions psychologically was quite essential: The wave

function has to vanish inside the hard core. Thus the free (unperturbed) part of the

wave function must be compensated by something else and naturally the question

did arise: what is this “ something else”? The same phenomenon is to be expected

for three particle scattering and so on. So there have to be a lot of cancellations to

generate the regions where the wave function vanishes. And — going with it — a

systematic procedure for approximations not destroying these internal cancellations

has to be invented. There is no long way to come to the realisation that even for

soft repulsive potentials the situation can’t be very much different.

Let me — following the historical development — start with a situation where

there is one single starting wave function (a “single reference state”), typically an

exactly known ground state of a zero order (or “free”) Hamiltonian. Examples, of

course, are ground states of non interacting many-body fermion or boson systems

(Fermi sphere, closed shell and Bose–Einstein condensate wave functions), or of

field theories (bare vacua). Fortunately, there were some earlier papers, indicating

or even explicitly showing that the exponential form of the wave function allows

one — at least in most cases — to get all the insights needed. Since I have described

these things in a former paper4 I shall be rather short here. In quantum field theory

Gell–Mann and Low5 derived a ground state wave function Ψ0 and energy E0 within

the realm of quantum field theory via perturbation theory.

|Ψ0〉 =
U(0,∞)|Φ0〉

〈Φ0|U(0,∞)|Φ0〉
and E0 =

〈Φ0|U(0,∞)|Φ0〉
〈Φ0|U(0,∞)|Φ0〉

, (1)
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with

U(0,∞) = T exp

(
∫ 0

−∞

dtV (t)

)

. (2)

(where Φ0 is the bare vacuum, T the time ordering operator and V (t) the interaction

in the interaction representation). This, although being of a time ordered exponen-

tial form, can be considered as a precursor to the CCM, especially since the authors

did prove that in the exponentials and in the energy only linked terms occur. The

true breakthrough was due to Hubbard,6 who by inspecting the time-independent

perturbation series to all orders managed to prove that only linked clusters appear

in the exponential form and that the energy consists of linked terms only. He also

demonstrated that for extended homogeneous systems each such term and thus the

energy itself is “size-extensive”, i.e. proportional to the particle number. This was

hard work and required a lot of detailed manipulations and rearranging of terms.

Shortly after this Coester7 reduced all this to a few almost trivial lines by using

the exponential form as an Ansatz and then applying the Hausdorff expansion

exp(−S)H exp(S) = H + [H , S] +
1

2!
[[H, S], S] + · · · (3)

to prove the linked cluster theorem for the amplitudes in the exponentials. As a

byproduct this proof was more general than Hubbard’s since — without stating

this explicitly- it was valid for finite systems as well as for fermions and bosons.

If I say that Fritz made the exponential Ansatz, I am in danger to provoke once

again the widespread belief that this Ansatz has some artificial and arbitrary taint

and that one could use as well another one. Indeed Rudolf Haag and Fritz Coester8

very early had made quite clear that this form of the wave function is quite natural.

They used the Bargmann space for their argument. Their reasoning is most easily

presented for boson fields and thus I shall deal only with them. (For fermions one

has to use Grassman variables.) Assume that everything may be represented by the

Fock space in terms of the usual creation and annihilation operators a
†
i and ai and

the bare vacuum Φ0. In the Bargmann representation these operators are replaced

by complex numbers as follows

a
†
i → zi and ai →

∂

∂zi

. (4)

The analytic functions of z1, z2, . . . f(z1, z2, . . .) (abbreviated as f(z)) generate

a Hilbert space with the scalar product

〈f |g〉 =
∏

i

(
∫

dzidz̄i

2πi
exp(−ziz̄i)

)

f̄(z)g(z) , (5)

and the states

|n1, n2, . . .〉 =
∏

i

(a†
i )

ni

√
ni!

|Φ0〉 →
∏

i

zni

i√
ni!

(6)
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define an orthonormal basis of Fock states. Making the (non-trivial!) assumption

that the Hamiltonian has a discrete normalisable ground state Ψ0, an arbitrary

state can be written as

Ψ(z) = G(z)Ψ0(z) (7)

(because for bosons the ground state has no zeros). But then also the state created

by

aiΨ0 → ∂

∂zi

Ψ0(z) ≡ Li(z)Ψ0(z) (8)

must have this feature. The solution of this equation is

Ψ0(x) = exp(S(z)) with Li(z) =
∂

∂zi

S(z) . (9)

Here the general S(z) is a superposition of polynomials

S(z) =
∑

n

Sn(z) (10)

with

Sn(z) =
∑

i1,i2,...,in

1

n!

∫

· · ·
∫

Sn(x1, . . . , xn)z(x1) · · · z(xn) , (11)

where I switched to the coordinate representation. This clearly is the Bargmann

analogue of the exponential wave function as used in the CCM. This derivation is

valid also for one-particle systems, of course. But as such it does not really tell us

anything about the quality of approximations, since necessarily any approximation

will change the structure of the wave function. I shall come back to this aspect

later in the context of the convergence of the CCM, where Arponen and Bishop9

returned to the Bargmann space.

Let me now repeat a visualisation of the exponential structure, which also psy-

chologically did play some role. This time I shall take extended Fermi many-body

systems as an example.

One starts from the Slater determinant |Φ0〉 of occupied levels, describing in

some sense the independent motion of all particles (Fig. 1). Then a pair of particles

may interact throwing each other out of the Fermi sea. This is a contribution S2|Φ0〉
to the wave function with

S2 =
1

2!2

∑

(i,j)〉kF

∑

(l,m)<kF

〈i, j|S2|l, m〉a†
i a

†
jalam , (12)
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Fig.1. StructureofFermigroundstate.Fig. 1. Structure of Fermi ground state.
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where kF is the Fermi momentum (summation over pairs of holes and pairs of par-

ticles). Now it also will happen that two particles interact independently from each

other. Their contribution is 1
2S

2
2|Φ0〉, with the factor 1/2 introduced to count each

pair only once. Similarly for three pairs 1
3!S

3
2|Φ0〉 occurs etc. The total contribution

due to all interacting pairs then will be exp (S2)|Φ0. But it also may happen that a

number of triples of particles interact independently of each other, thus leading in

the same way to exp (S3)|Φ0〉, and so on. For extended systems momentum conser-

vation forbids occurrence of S1. For finite Fermi systems the Thouless theorem10

tells us that the most general Slater determinant Φ′
0 is related to a given one Φ0

via |Φ′
0〉 = exp(S1)|Φ0〉. Thus the complete exponential wave function

|Ψ0〉 = exp(S)|Φ0〉 with S =

∞
∑

n=1

Sn (13)

(with Sn as proper generalisations of (12)) is recovered.

There is one more argument for the exponential, this time intermingled with

the need to do approximations. Assume that the Hamiltonian has the usual form

with finite-range interactions. Then, one may divide the space into spatially well

separated cells labelled by k. To each cell belong operators a(k)†(x) and a(k)(x)

restricted to the cell k. The Hamiltonian becomes a sum

H ≈
∑

k

H
(k) (14)

and the wave function a product

Ψ0 ≈
∏

k

Ψ
(k)
0 (15)

with Ψ
(k)
0 different from zero only in cell k. Clearly only the exponential form with

S =
∑

k S
(k) — and S

(k) different from zero in cell k only — can combine both

equations with the necessary “cluster property” of the functions Sn in coordinate

space, implying that the latter vanish for large distances. This feature is closely

related to what the quantum chemists have termed “size-consistency”: the approx-

imation by putting Sn = 0 for all n > N (termed SUBN or N -particle subsystem

approximation by the CCM people) keeps this structure intact due to the expo-

nential form of the wave function. Note also that this connection between cluster

structure and exponential form has a long history in statistical mechanics, known

as the Ursell–Mayer linked cluster expansion of the partition function.

This exponential structure at first sight looks so compelling and superior to any

other one. In a naive theoretical sense it certainly is. But firstly from a practical

point of view this is not always true. Here especially the correlated basis function

(CBF) method13 should be mentioned. Without doubt it is by far superior to the

CCM for very high density systems like the helium fluid. I do not know whether

anybody else has tried it with the CCM. I only remember that at Bochum around

1972 we completely failed in finding realistic ground state energies and thus did
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not dare to publish it. Probably a SUB4 approximation (something we could not

do at that time) would be sufficient. Although this nowadays would be possible,it

requires a much greater effort than using CBF. And nobody would be interested in

doing this, especially in view of the excellent Monte Carlo14 results. I regret very

much that the combination of CBF and CCM we have developed in collaboration

with E. Krotschek11 never has been tried out.

Secondly, I want to make quite clear that any approach using a “zero order”

or “unperturbed” Hamiltonian H0 is less compelling than one may think at first.

Indeed, there is no a priori reason for the existence or use of such a H0. CBF, Monte

Carlo and all what follows from the Jastrow variational program12 are examples

for very successful “theoretical physics (almost) without perturbation theory based

on a H0”. Thus we CCM believers should not overestimate our beloved technique.

On the other hand, I still think that in the realm of methods based heavily on

an H0 the CCM with its extensions is the most general and possibly the most

powerful one.

2. Truncations and Symmetries

Of course, as said above, approximations have to be made. There are some diffe-

rent versions for the final approximate CCM equations, about which I later shall

say more. In most of them the operator S is truncated via the SUBN approximation

in the way described above. Having avoided spoiling the size-consistency one may

ask whether there are other things spoilt by it. Indeed, already the first candidate,

relativistic invariance, flunks the test. There are two ways to look at it. One of them

is by realising that the diagrams on which the CCM is based are the non-covariant

ones as obtained in the Goldstone time-independent perturbation expansion. The

covariant Feynman diagrams are certain combinations of Goldstone’s. A second

argument is based on the observation that the boost operator applied to a trun-

cated wave function will create out of a given Sn some new S
′
n′ with n′ > n and

the truncation is spoilt. In summary, truncating the Feynman expansion keeps the

relativistic invariance and it destroys the size-consistency, whereas typical (not all)

approximations in the CCM do just the opposite. It is trivial that without approxi-

mations both are identical and that one therefore may hope that a sufficiently high

order approximation violates relativistic covariance or size consistency only very

little. One stringent test for the former in quantum field theory is the momentum

dependence of the energy of a single meson, namely the form ω(k) =
√

M2 + k2,

where M is the physical mass. The worst case I could find in my notes is for the

1 + 1-dimensional Φ4 field theory15 rather near the famous phase transition. The

6% deviation occurring in this example is a rare exception, it mostly is smaller

than 1%. Such excellence proves the high quality of the underlying CCM SUB4

approximation.

Other symmetries, like the translational and rotational ones, are not necessa-

rily and unavoidably violated by the CCM, although they pose serious technical
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problems. It is only fairly recently that the Manchester group has resolved this

problem.16 As far as I understand it, always the representation by harmonic

oscillator states is essential. In our early nuclear physics work17 we just subtracted

out the centre of mass energy, but did not really use the relative coordinates in the

Hamiltonian. Thus it was only an approximation, not always a very reliable one for

very light nuclei like 4He.

3. The Slow Start and the Complexity of the CCM

Considering the fact that the CCM was well understood around the late fifties it

looks strange that nothing happened with it until 1966, as Jǐri C̆iz̆ek published his

first paper on a quantum chemistry problem.18 He had looked into the 1957 and

196019 papers published in Nuclear Physics by Fritz and myself. I always found it

quite remarkable that a quantum chemist would open an issue of a nuclear physics

journal. I myself at that time had almost given up the CCM as not tractable and,

of course, I never looked into the quantum chemistry journals. The result was that

I learnt about Jǐris work as late as in the early seventies, when he sent me a big

parcel with reprints of the many papers he and Joe Paldus had written until then.

I myself up to about this time did neither have the manpower nor the computer

to do anything much beyond the work of Brueckner2 (the SUB2 approximation

for nuclei).

This now is the natural place to say something about the technicalities involved.

Because of the often large number of terms in all versions of the CCM it is rather

hard work to obtain the explicit equations by hand. And after this is done one has to

write a program to put them into the computer. I feel that this offers an explanation

why the quantum chemists jumped at the CCM before the physics community

considered it in earnest: The chemists at that time were much more trained in the

use of computers than the physicists, and after all without computers the CCM was

quite useless. I believe that even today there are more applications on atoms and

molecules than in all other fields together. But, of course, it became a great relief

as people learnt do the routine (if you like, the engineering) part of the CCM by

computer algebra. At present much of the applications are done in this way, both

by the quantum chemists as well as by the physicists. The CCM equations are just

made for computer algebra! This is a very desirable development, since after all as

little manpower as possible should be invested for this “trivial” work.

4. Selecting a Truncation

Then, where is the non-“trivial” part, i.e. where is the physics besides in the selec-

tion of the Hamiltonian? There are only two occasions for the physicist to interfere:

the truncation and the selection of the starting wave function Φ0. Size consis-

tency allows only what I have called SUBN approximation, i.e. putting all Sn = 0

for n > N . For hard-core potentials (or those with strong repulsion) actually a

different truncation must be used in the CCM equations: using this naive SUBN
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approximation leads to infinite (or very large) terms. It can be most easily seen

on the very lowest level, namely the unperturbed wave function: matrix elements

〈ij|V | kl〉 of the potential become infinite (or very large), where the labels i, j, k.l

refer to the SP states. The necessary systematic (“hard core”) truncation scheme

found nearly at the beginning of the CCM history19,20 uses n-particle subsystem

amplitudes. For two to four particles they are (qi = occupied, pi = non occupied

levels, A = (anti)symmetrisation)

〈x1, x2|χ2|q1q2〉 = A〈x1|q1〉〈x2|q2〉 + 〈x1, x2|S2|q1q2〉 ,

〈p1p2p3|χ3|q1q2q3〉 = 〈p1p2p3|S3|q1q2q3〉 + A〈p1|S1|q1〉〈p2p3|S2|q2q3〉

〈p1 · · · p4|χ4|q1q2q3q4〉 = 〈p1 · · · p4|S4|q1q2q3q4〉 ,

+A〈p1p2|S2|q1q2〉〈p3p4|S2|q3q4〉

+A〈p1|S1|q1〉〈p2p3p4|S3|q2q3q4〉 . (16)

They appear as such in the CCM equations often in the form of finite matrix

elements 〈i, j, . . . |V χn|k, l, . . .〉. This also answers the question put above: Inside

the hard core 〈x1, x2|S2|i, j〉 is just the amplitude making the wave function equal

to zero. For three, four, . . . particles things are a bit more complicated, but fully

under control.21 In general the CCM equations can be expressed completely in

terms of these well defined “n-particle subsystem amplitudes” (sometimes termed

“n-particle Bethe–Faddeev” amplitudes) χn. For n = 3 and 4, they have been used

in nuclear physics.17 Since this certainly is not the simple SUBN approximation

of above the size-consistency is not preserved exactly. Would one, for instance,

insist on the S2 approximation to save size-consistency, i.e. use the wave function

exp(S2)|Φ0〉, then already the term 1
2S

2
2|Φ0〉 — as shown in the χ4 amplitude of

equation (17) — would be different from zero inside the hard core and generate

infinities. This never has been a serious drawback since in nuclear physics size-

consistency is a minor problem, in contrast to quantum chemistry where the rela-

tively soft Coulomb interaction allows standard SUBN approximations and the

size-consistency naturally is important in many cases.

5. Reference State

Another problem which always had to be considered, of course, was to find the

best possible starting wave function Φ0, the reference state. The early work consi-

dered only homogeneous extended systems with plane waves as the only possible

single particle (SP) basis. The quantum chemists invariably use HF wave functions.

For them there is no reason to do something else, because they have a large stock

of these SP wave functions, developed (which is hard work!) and tested for many

years. After all, this is a reasonable and very successful approach since the energy

has been optimised via the Rayleigh–Schrödinger variational (RS) principle. But it



November 28, 2003 19:46 WSPC/140-IJMPB 02044

A Biography of the Coupled Cluster Method 5319

is not always the best one. Indeed, in the case of Φ4 field theory there is an enor-

mous advantage in using the “maximum overlap” (MO) wave function as starting

wave function: they are determined by maximising |〈Ψ0|Φ0〉|, where Ψ0 is the exact

ground state. In this case it so happens that the symmetry breaking version of this

quantum field theory with MO could be treated everywhere, even near the phase

transition of the symmetric counterpart, whereas the Hartree–Fock approach did

fail there. Similar but less striking experience exist with other models. But there is

another more technical aspect, namely that the CCM equation become quite a lot

simpler: in the boson case with MO there is no S1 and no S2, or more generally,

there is no one or two particle component in the wave function. For fermions S1

vanishes; no one particle hole-pair components occur. It is true that one has to

compute a new SP basis together with solving for the Sn (a fact, which makes MO

impractical in quantum chemistry). But programming sometimes is greatly simpli-

fied because the number of terms is very much reduced due to the vanishing of all

terms with S1 and/or S2.

In a sense more important than these more technical aspects for selecting a refe-

rence state are the symmetries of the latter: different phases require quite different

reference states, and especially in quantum chemistry the various molecular configu-

rations need to be implemented and tried out. One has to use some intuition, or, if

available, information from elsewhere to find the right ones. Since 1991 there is a

wealth of papers dealing with phase transitions in combination with CCM, mostly

from the Manchester group.23 In some cases the phases are known or there is an

idea how they look like, and then it is fairly easy to make the right guess. Here

MO sometimes may be helpful: For a true (local) maximum all eigenvalues of the

second derivatives of the overlap |〈Ψ0|Φ0〉| are negative at the stationary point. But

if one or more of the eigenvalues should approach zero and even become positive

as a function of some parameter, this indicates the onset of a new better reference

state, describing a different shape or phase of the system.24 Then one may use this

new state Φ0 from the outset. In quantum chemistry a more HF-like approach has

been invented and applied by Bartlett:25 instead of the overlap energy derivatives

are used to search for optimal molecular configurations. In principle, any reference

state not orthogonal to the exact state will do. But, the more of the features of

the latter are incorporated in the former, the larger the overlap between exact and

reference state and the better the approximation will be.

However, one has to realise that the overlap between the reference state Φ0

and the normalised exact one exp(S)Φ0〉/〈exp(S)Φ0| exp(S)Φ0〉 in most cases is

extremely small or formally equal to zero. Fortunately only some special parts of

the wave function are relevant. For instance, for Fermi systems with two body

interactions the energy can be written exactly as

E0 = 〈Φ0|H exp(S)|Φ0〉 = 〈Φ0|H
(

1 + S1 +
1

2
S

2
1 + S2

)

|Φ0〉 . (17)
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The higher Sn occur only in the equations for these amplitudes. If their influence

is small — and this is the assumption on which all approximations are based —

then on can hope for reliable values for the energy. Thus the small overlap is not

necessarily a problem.

6. CCM Equations

So far I have enumerated features of the CCM for systems for which a single starting

wave function Φ0, i.e. an antisymmetrised or symmetrised product of SP states or

a bare vacuum are sufficient. Very little has been said about the way the approxi-

mations actually are performed. Putting Sn = 0 for n > N leaves some freedom

how to proceed further. There is the “normal” CCM (NCCM) which projects the

Schrödinger equation onto a complete set of Fock states:

〈a†
i1
· · ·a†

in
Φ0| exp(−S)H exp(S)|Φ0〉 = E0δn,0 . (18)

(From now on the creation operators a
†
i are either creation operators for particles

(bosons) or for particle-hole pairs (fermions).) This is the simplest way to get at

results and therefore has been quite often the first choice. It has the advantage that

for an interaction with a finite number of interacting particles or a finite power

of field operators, the number of terms is finite. And even in cases with infinite

powers — like the sine-Gordon field22— the terms can be summed in closed form.

Nevertheless, this NCCM has aesthetic and practical disadvantages. Bra and ket

are treated on quite different footing, because one projects on free Fock states only.

Here Jouko Arponen, who has contributed so much to the understanding of the

CCM, has found a sophisticated solution. He introduced two ideas26 to partially

or completely restore the symmetry between bra and ket: The problem arises first

if one wants to compute expectation values of an operator O with the CCM wave

function:

〈O〉 =
〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

=
〈exp(S)Φ0|O| exp(S)Φ0〉
〈exp(S)Φ0| exp(S)Φ0〉

. (19)

Naively truncating via the SUBN approximation generates unlinked terms and

therefore violates the Feynman–Hellman theorem which in turn is an indication

of spoiling the size-consistency. This last feature is more or less evident from the

inspection of the truncated series from which rather easily follows that there occur

unlinked terms (and, by the way, the number of terms is infinite). This risk one may

take if the Sn amplitudes are quite small and a low order expansion is good enough.

It is better to follow Arponen: He did partially restore the bra-ket symmetry by

parametrising the bra state as

〈Ψ̃0| = 〈Φ0|Σ̃ exp(−S) . (20)

Here Σ̃ is

Σ̃ = 1 +
∑

i

σ1(i)ai +
1

2

∑

ij

σ2(ij)aiaj + · · · . (21)
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Ψ̃0 would be the exact bra if

Σ̃ =
exp(S†) exp(S)

〈Ψ0|Ψ0〉
(22)

would be used in the expectation value defined as

〈O〉 = 〈Ψ̃|O| exp(S)|Φ0〉 . (23)

Thus all excitations occurring in the bra are lumped together in the operator σ̃.

The remarkable and non-trivial feature of the energy expectation value 〈H〉 defined

in this way is that variation with respect to the amplitudes Sn and σn yields the

CCM equations (19) and

〈Φ0|Σ̃ exp(−S)[H , a†
i1
· · ·a†

in
] exp(S|Φ0〉 = 0 , (24)

which is a set of linear equations for the amplitudes σn. In addition 〈H〉 in the

form (24) trivially is the exact energy and identical with (19) for n = 0. (24) allows

a rather simple evaluation of other expectation values. I admire the ingenuity of

Arponen for inventing this seemingly strange form for the expectation value and

showing that it is not at all strange, because in it are buried the exact CCM

equations. I only mention that the resulting terms are linked, thus obeying the

Feynman–Hellman theorem. Note, however, that there is no upper bound property

connected with this variational principle. One may ask why one does not use the

naive form (20) of the energy expectation value for the RS variational principle and

varies with respect to the Sn amplitudes. The answer is that the resulting equations

are too complex to be useful, for instance because they contain expectation values,

which one does not know how to compute within this “old” formalism.

In the same paper Arponen26 went one step further by using an exponential

Ansatz Σ̃ = exp(S̃) also for Σ̃. This has the advantage that the new S̃n amplitudes

themselves are linked and a proper truncation conserves size-consistency. Naturally,

this formalism, called “extended CCM” (ECCM) is both more powerful and more

complicated than the NCCM. It is the most reliable method for describing different

phases in terms of order parameters as expectation values of certain operators. Thus

Arponen’s work has led to a close cooperation with Ray Bishop and his Manchester

group and finally to an enormous amount of important results in a wide range of

objects from magnetism to lattice gauge fields.

Finally I should mention “local” versions of the CCM. In cases where Sn with

high n are needed, but the high dimensionality of the Sn are a problem, one still can

try to include them by restricting the range of the variables. For instance, in lattice

spin models one may include only neighbours of a given site. This has been used at

several occasions since 1990 by the Manchester group.27 Also, in cases where one

knows from other sources that some specific configurations are important, one may

select Sn amplitudes which are adapted to them. As long as the reference state is

not orthogonal to the exact one, anything is allowed. To include in addition to the

standard (NCCM or ECCM) SUBN some specific Sn amplitudes with n > N can

only improve the results. In the worst case it may be useless.
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7. Problems and Mathematical Background

Before going on to the more general CCM approaches, let me say something about

the mathematical background of the method, the preliminary highlight being a

paper by Arponen and Bishop.9 Because the CCM can be characterised as some kind

of improved perturbation theory, the problems of the latter sometimes will shine

trough. There is the question of convergence. One warning signal came rather early.

Applying the NCCM to the anharmonic oscillator28–30 it was found that it is a very

efficient method to obtain excellent approximations up to about S6-approximations

(SUB6). After that the results (compared to the exact one) deteriorate with oscil-

lations typical for asymptotic convergence, finally to become useless. In addition, it

became clear that the truncated wave function could not be normalised. However,

in the paper by Arponen and Bishop mentioned before a mathematical analysis

of the anharmonic oscillator has been performed showing that the Bargmann rep-

resentation of the untruncated NCCM and ECCM equations and wave functions

are well defined. Thus, both truncation and ordinary Hilbert space are the causes

for the failures showing up in numerical solutions using CCM. At best asymptotic

convergence can be hoped for. Since concrete results exist only for some one body

systems, we cannot say anything definite about many-body ones. However, things

can only become worse by going over to more particles. But this certainly is not

specific to coupled cluster theories: we share this problem with more or less all

branches of physics.

8. Generalisation to Multireference Systems and Excited States

I now go over to more complex systems: assume that a single starting wave function

is not sufficient. This is the case for open shell systems, i.e. systems with some

particles outside closed shells, or those with particles removed from the closed shell

(excited states), or one particle states in field theories (technically identical with

closed shells plus one particle) and so on. These systems are termed “multireference

systems” in the literature.

I think the techniques for these systems were first obtained by the Bochum

group in 1976,31 although there seems to be a precursor by Mukherjee published

in an Indian journal I could not lay hands on.32 The explicitly linked form was

invented two years later independently in Bochum33 and in a more convenient form

by Ingvar Lindgren in Göteborg.34 These versions were different in appearance, but

actually identical as long as no truncations were introduced. All versions have one

thing in common: a basic ingredient is the ground state of the single-reference type,

for example the closed shell system. (This idea actually is due to Fritz Coester

who as early as 1969 mentioned it in a little known paper.35) The Sn amplitudes

obtained via single-reference CCM are an input for the multireference equations.

This makes sense only as long as the additional particles do not disturb the closed

shell too much, i.e. the number of additional particles must be small compared to
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their total number and the excitation energies must be small compared to the total

energy. In 1981 Emrich36 invented a CCM for excited states of the same symmetry

as the ground state, again using the ground state as input. All techniques can be

summarised by the form

F exp(S)|Φ0〉 (25)

for the wave functions. Here F is an operator adapted to the problem at hand: for

open shells it increases the number of particles to the desired number higher than

the number of particles in the closed shell in all possible ways, creating holes in the

shell and moving around particles in the levels above the closed shell, the “model

space”. For excited states of the same symmetry as the g.s. it generates all numbers

of particle-hole pairs. For mesons in boson field theories it is a sum of creation

operators. (In this case one has to start the iteration of the CCM equations with

one, two, . . . additional free particles if one is looking for one, two, . . . meson states,

since there is no particle number conservation.)

All methods have their problems. One is that there are practical (computational)

limits to the size of the model space and, more seriously, the appearance of “intruder

states”, such that one may be forced to switch to an incomplete model space. This

requires great care. To the best of my knowledge, Kaldor37 was the first one to

introduce this technique and Mukherjee38 the first one to make it general and

systematic and to resolve the size-consistency problems for such multi-reference

systems. Also due to Mukherjee is the idea of applying the operator exp(S) on a

set of reference states.39

9. Temperature- and Time-Dependence

Time-dependent forms of the NCCM were introduced independently by

Monkhorst40 in 1977 and Negele41 in 1978. For the ECCM Arponen, Bishop and

Pajanne found a very general description in 1987.42 Mukherjee introduced a mul-

tireference time-dependent CCM in 1987.43 I do not go into any details here, since

to my knowledge there are relatively few applications. Finally I have to mention

another contribution to the CCM by D. Mukherjee: he was the first one to develop

a trustworthy temperature-dependent CCM.44 I must admit that I do not know the

present status of applications of this method to realistic problems.

10. Applications

During the past 40 or so years the CCM has invaded one branch of Chemistry

and Physics after the other. It is quite impossible to give a complete overview

of everything which happened until today. Instead let me present a (possibly not

complete) list containing the dates and the authors of the first applications in each

individual field.
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First applications in various fields

1966 Quantum Chemistry, J. C̆iz̆ek18

1973 Finite Nuclei, H. Kümmel and J. G. Zabolitzky45

1977 Finite dimensional models, K. H. Lührmann46

1978 Electron gas, R. F. Bishop and K. H. Lührmann47

1981 Nuclear matter, B. D. Day and J. G. Zabolitzky48

1982 Finite dimensional models with ECCM, J. Arponen49

1985 Quantum field theory, C. S. Hsue and H. Kümmel50

1988/9 Electroweak Interaction (relativistic) effects, I. Lindgren, J. Lindgren and

A. M. Mårtensson;51 S. A. Blundell, W. R Johnson and J. Sapirstein;52

1990 Spin lattice models (ECCM), M. Roger and J. H. Hetherington53

1990 Energy derivatives, (molecules), E. A. Salten, G. W. Truck and R. J.

Bartlett25

1993 Lattice gauge fields, R. F. Bishop, A. S. Kendall, L. Y. Wong and Y. Xian54

2001 From hearsay: Solid states, Biophysics
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